DNS Anycast Statistic Collection

RIPE 61 Measurement Analysis and Tools Working Group

18 Nov 2010

Edward Lewis

Neustar

© Neustar Inc.

neustar

What's so hard about reporting?

Collecting DNS Statistics (Generic)

The Technical Problem to Solve

- » Multiple remote sites with small limited local storage to store statistical data
 - Lots of data to observe
- » Central analysis point

Choices

- » Sampling, summing or packet capture
- » Store & send or pre-process remotely

What is to be Learned

- » Activity by wall-clock and/or event
- » Rough approximation
- » Trends

It's not a few drips, it is a fire hose

- Our servers see 12-20 billion queries per day
 - » Rough estimates:
 - Queries 80 bytes
 - Responses 300 bytes
 - » That's pre-DNSSEC averages

• Total size per day, tracking everything

- » Queries: 1.5 TB
- » Responses: 5.5 TB
- » Total traffic compresses to maybe 3 TB/day
- » DNSSEC records don't compress as well

Sampling just 1% of data, still equals 30 GB/day (compressed)

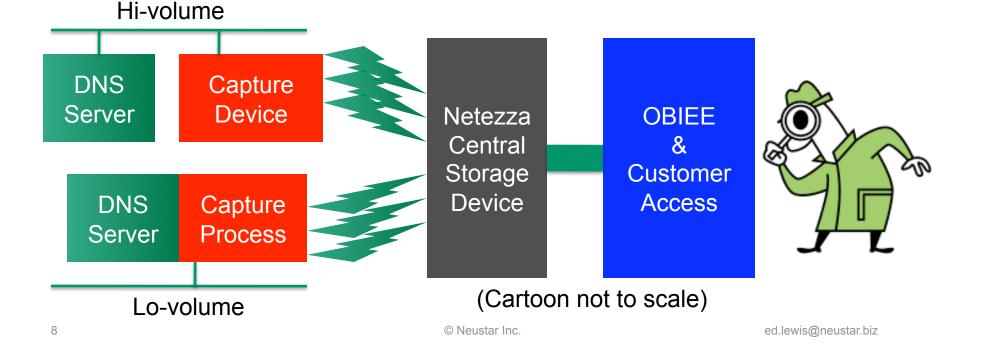
Have to stick to what's important

Focus: cut down on traffic, to manage the analysis

- QNAME and QTYPE
- Originating IP
- Minute granularity

Which server answered and how well (fast)

Accuracy


- An important factor
 - » Is the collection accurate?
 - » Is the analysis accurate?
 - » Important for Monitoring, Analysis and Forensics
- More importantly Does it agree with billing data?
 » Was the billing data accurate?
 » Engineer's "white-knuckle" question
- The test: Would you use this for billing too?

Neustar's Approach

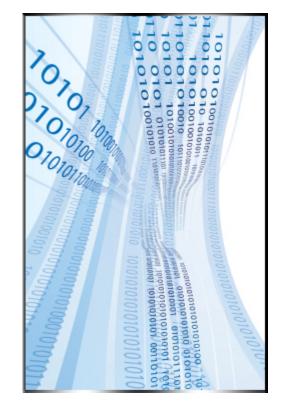
High-level Design

- Each site has Capture Devices
- Data Routed to central storage devices Netezza
- Oracle Business Intelligence Engine (OBIEE) performs reports against the Netezza device.

Capture, reporting, analysis approach

Collect and sum locally

- » High volume nodes use two in-line network taps
- » Low traffic nodes use software on the DNS host
- » Each query saved until matched to a response
- » Aggregated data counted and compressed locally
- Send to central repository every <u>second</u>
- Central Netezza Database for analysis
 - » Unique zones and QNAMES are loaded to dimension tables (about 1 billion unique QNAMES / month).
 - » Metrics loaded to fact table (~2billion rows/day).
 - » Map Source IP Address to Geographic Location


What data is captured

• Per Minute, per node, query detail

- » Network Protocol (IPv6 or IPv4, UDP or TCP)
- » Query Name and Type
- » Response Code (e.g., SERVFAIL)
- » Response Time Bucket (<1, 10, 100ms, etc)
- » Complete NXDOMAIN traffic (QNAME)
- » Unanswered Queries (malformed, lame, etc.)

Sampled Data

- » Track minimum of 1% of all traffic
- » Query's source IP, full response message
- » Will likely add logic to store sample for "irregular" queries

Compression is King

Netezza

- » Provides 6x compression of numeric data
- » QNAMEs are saved in a separate table to maximize this

Messages as bitmaps

- » Encode a DNS message in a 64 bit integer
- » UDP/TCP (1 bit), Yes/No: A, AAAA, NS, NXDOMAIN, ...
- » Count how many times this appears in a minute

Minutes expressed as bitmaps

» Many minutes are the same too

Relying on observed network behavior

» Data can be compressed 30x to 40x compared to raw packet stream

Reporting Capability Detail

Reporting Capabilities							
	Pre -2010 Reporting	Standard Reporting	Advanced Reporting				
Objects Under Management	Partial	Х	Х				
Reporting Interval – Monthly	Х	Х	Х				
Reporting Interval – Daily		Х	Х				
Reporting Interval – Hourly		Х	Х				
Reporting Interval – Minute			Х				
Near Real Time Reporting			х				
Total # of Queries	A, Z	A, Z, Q	A, Z, Q				
TCP vs. UDP Queries		A, Z, Q	A, Z, Q				
IPv4 vs IPv6 Queries by Zone		A, Z, Q	A, Z, Q				
Queries by Query Type		A, Z, Q	A, Z, Q				
Queries by Node Region	A, Z						
Queries by Source Country		A, Z, Q*	A, Z, Q*				
Avg/StdDev Query Response Time		A, Z, Q	A, Z, Q				
Queries by US State / CA Province / Zip Code			A, Z, Q*				
Queries by Source IP			Q*				
Queries by RCODE (Includes Errors)			A, Z, Q				
Forecast Monthly Query Amount		х	х	*Reports			
Monthly Trending Reports		Х	х	A = Acco			
Download Reports	Х	Х	х				
Easily View Trends		Х	х	ed.lev			

Reports are based on Sample data

A = Account , Z=Zone, Q = QNAME

ed.lewis@neustar.biz

"Stories from the Road"

OR "Potholes we managed to hit...."

ed.lewis@neustar.biz

Queries and Responses

Is every query answered?

» Can't just track the responses, must track queries and match to the responses.

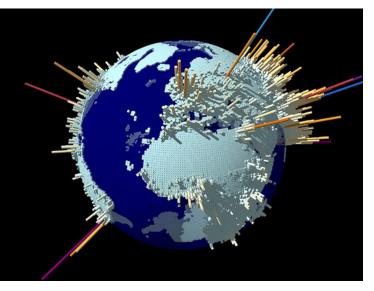
• How well (fast) are servers operating?

 The DNS Server is only a portion of the site architecture.
 Must attempt to determine the time a query enters the site and determine the time the response leaves the site

• Can the DNS Server do the measurement?

» No way. It's what's being monitored

» (joke) 100% of all dropped queries are never answered!


Problems encountered in monitoring

QNAME population size

- » NXDOMAIN traffic for TLDs generates a lot of data, need to store it
- » In an attempt to defeat cache poisoning, some recursive DNS service providers have appended random strings in front of queries to TLDs (inflating QNAME population)
- » Certain Managed DNS service customers rely on random/undefined hostnames.
 - One large social networking site generates billions of unique QNAMEs.

• DDoS

» Packet floods need to be mitigated, monitoring needs to record them but not fall to them

Things seen with this system

Sudden Traffic Growth Syndrome

» Several causes – data gives chance to determine why

Rogue Recursive Servers

» Some only "went rogue" on specific zones (big and small ISPs)

Routing issues

» Matching answering anycast node with the source country

• DDoS

» Small DDoS attempts/attacks are noticed

The World isn't That Big

» Top 1000 Source IP Addresses perform half of DNS queries

Some Stats

UDP	ТСР	IPv4	IPv6
99.936%	0.014%	99.76%	0.24%

Α	ΑΑΑΑ	CNAME	DNSKEY	МХ	NS	PTR	ТХТ
75.01%	9.3%	0.10%	0.02%	10.34%	0.35%	3.2%	0.5%

Queries arriving via IPv6: 0.24% Contrast to the nearly 10% of queries for AAAA

"There are no mistakes, only lessons. Growth is a process of trial and error."

Where do we go from here?

2011 Roadmap

- Response by Server in Detail
- Alerts for Account Level Changes
- View/Download Raw Sampled Data
- Comparison Graphing
- Query Type Drill Down
- Additional Filtering
- Scheduled Emailing of Reports
- Access to Reporting Data via API
- Interactive Graphing
- Map view of Geo data
- User defined Ad hoc reporting

Questions?

ed.lewis@neustar.biz